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(Received November 21, 1988, in final form February 18, 1989). 

Debonding energies have been calculated from peel and lap shear experiments on rubber strips 
bonded together with a pressure-sensitive acrylic adhesive layer. In some cases, one strip was held 
stretched during bonding, to create joints with built-in stresses. Good agreement was obtained in all 
cases, provided that elastic strain energy was taken into account, the work of debonding being about 
180 J/rn2. For thick rubber strips, about 3-4 mm or greater, the strain induced by peel or shear forces 
was rather small and the assumption of linear elastic behavior was found to be satisfactory. Good 
agreement was then obtained with the relations derived by Kendall.’.’ 

KEY WORDS Lap shear; peel; shear strength; residual stress; shrinkage stress. 

1 INTRODUCTION 

Peel and lap shear tests are simple and widely-used methods of measuring the 
strength of an adhesive bond. But the results are not easily compared. The peel 
force per unit width of the joint can be directly interpreted as an energy Go 
required to debond unit area of the interface. On the other hand, it is usual to 
describe the strength of a lap shear joint by the mean shear stress causing 
debonding. But the joint does not fail in shear by simultaneous debonding of the 
entire bonded area. Instead, the bond fails first at a highly stressed site, usually at 
one edge, and failure then spreads across the interface. 

Kendall calculated the strength of a lap-shear joint on this basis’” using 
Griffith’s energy-balance approach, and showed that the debonding energy 
deduced from lap shear measurements on model joints agreed well with that 
given by a simple peeling experiment. However, Kendall assumed that the 
stress-strain relationship in tension for the two adhering strips was a linear one 
and the strains were small. These assumptions are not necessarily true for thin 
strips, which might be stretched to large strains during bonding or  detachment. 
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2 A. N. GENT AND C. W. LIN 

The theory is reviewed here and measurements on extensible rubber strips are 
compared with predictions made with and without the assumption of small 
strains. 

If one of the strips is stretched when it is bonded to the other, the joint is made 
more resistant to separation, at least for prestrains below a critical level at which 
the strips spontaneously debond on release from the preload. Both the strengthe- 
ning effect of initial prestrains and the critical degree of prestrain at which 
spontaneous debonding occurs can be calculated on the basis of elastic strain 
energy contributions to the work of debonding, assuming that the intrinsic bond 
strength is unchanged by prestretching. Some measurements are reported of the 
peel and lap shear strengths of joints prepared by bonding a stretched rubber 
strip to an unstretched one. Such joints can be regarded as models of adhesive 
joints prestressed due to a variety of causes; for example, by shrinkage of one 
layer on setting or by differential thermal contraction. 

2 THEORETICAL CONSIDERATIONS 

Work is expended in two ways in peeling. First, the detached strip is stretched, 
to a strain of e, say, requiring input of strain energy U per unit volume. If it was 
already stretched to a strain of e*  in the bonded state, before peeling, with a 
corresponding amount of strain energy U* per unit volume stored in it, then the 
additional energy supplied is U - U * .  Secondly, an amount of energy G, is 
expended per unit area of interface in debonding the adhering surfaces. (It is 
assumed that G, is the same for stretched and unstretched adhering surfaces, but 
we note that unit area of surface becomes (1 + e*)lR in the stretched state.) Thus, 
the work done by the peel force F during detachment of a strip of unit length in 
the unstrained state (given by Fx where x is the displacement of the point of 
application of the force) is equal to the sum of these two terms, 

Fx = [G,(1 + e*)'O + (U  - U * ) f ] w  (1) 

where t is the unstrained thickness and w is the unstrained width of the peeling 
strip. 

From geometrical considerations (Figure 1 )  x is given by 

x = [1+ e - ( 1  + e*)  cos 01 (2) 

where 0 is the peel angle. The debonding energy C, is then obtained from Eqs. 
( 1 )  and (21, 

G,(1 + e*)ln = ( F / w ) [ l  + e - ( 1  + e * )  cos 01 - ( U  - U*)t .  (3) 

In the case of linear elasticity, the strains e and e *  are given by F l w f E  and 
F*/wtE,  where E is the tensile (Young's) modulus of the strips, F* is the residual 
tension in the strip before separation, corresponding to the strain e * ,  and the 
strain energies U and U* are given by ( F / w ~ ) ~ / ~ E )  and ( F * l ~ t ) ~ / 2 E .  Thus, for 
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5 

FIGURE 7 
Eq. (16); 0, using Eq. (15). 

Debonding energy us. strip thickness, calculated from lap shear measurements: 0, using 

calculated from them assuming that the strips were linearly elastic, Eq. (4), or 
that they were non-linearly elastic, Eq. (3). The results are plotted in Figure 8 
against the thickness of the rubber strips for various amounts of prestrain e * .  
When the strips were assumed to be linearly-elastic the results were not constant 
but depended on the strip thickness, especially for thin strips. On the other hand, 
when non-linearly elastic behavior of the strips was taken into account, then the 

0 I - .  

0 1 2 3 4 5 
t [mml 

FIGURE 8 Debonding energy us. strip thickness, calculated from peeling measurements on 
prestrained samples: 0, V, e* =0.10; 0, 0, e*  =0.25; A, A, e* = 0.30; 0, ., e* = 0.60. Open 
symbols from Eq. (4), filled symbols from Eq. (3). 
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calculated values were approximately constant, independent of the strip thick- 
ness. Moreover, the average value, about 210 J/m2, was close to that obtained 
from peeling and lap shear measurements on unprestressed joints, Figures 6 
and 7. 
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(b) Lap shear strength In order to calculate debonding energy for prestressed 
lap shear joints in the most general case, Eq. (ll), it is necessary to deduce the 
strains e ,  and e2 in the two bonded strips under the failure force F. This was done 
by trial and error, using Eqs. (12) and (13). Values obtained in this way are given 
in Table 4, together with the results for G, calculated from them. As can be seen 
.in Figure 9, these values of G, are approximately constant at about 160 f 20 J/m2, 
close to the value deduced from peeling measurements, and independent of the 
strip thickness, whereas values calculated on the basis of linearly-elastic behavior 
using Eq. (14) are much smaller for thin strips and not independent of the strip 
thickness. We conclude that it is necessary to take into account non-linear elastic 
behavior of rubber strips to predict the effect of large prestrains on peel and lap 
shear strengths. 

(c) Strengthening effect ofprestresses As shown by the failure forces given in 
Tables 3 and 4, prestressed joints were more resistant to separation than 
non-prestressed joints. The maximum increase in strength was about 50 percent. 
But, at a critical amount of prestrain, denoted in Table 4 by ef,  the joints 
spontaneously debonded on releasing them from the prestress. Values of 
debonding energy have been calculated from the corresponding pre-tension forces 
F,*, using Eq. (11). They are included in Table 4. They are seen to be in good 
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PEEL AND LAP SHEAR BOND STRENGTHS 11 

agreement with values determined directly from measurements of failure forces. 
Thus, the maximum amount of prestress that a joint can withstand is also given 
correctly by fracture energy considerations. 

5 CONCLUSIONS 

Peel and lap shear debonding forces are related by a common failure criterion: 
that a critical amount of energy G, is needed for debonding. This conclusion of 
Kendall has been verified again for adhering rubber strips of a wide range of 
thickness, bonded together with various amounts of residual stress. But it has 
proved necessary to take into account both the relatively large strains that rubber 
can undergo during detachment, especially when the strips are thin, and the 
non-linear elastic response of rubber. Otherwise, the inferred debonding energies 
are too small, by factors of up to 3 or 4 in the present experiments. 
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Appendix 

Mix formulations in parts by weight and vulcanization conditions were as 
follows: natural rubber, 100; zinc oxide, 5; stearic acid, 2; accelerator (Sant- 
ocure), 1; sulfur, 2.5. Vulcanization was effected by heating for 30 min. at 150°C. 
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